Diterpenoids from the Rhizomes of Alpinia calcarata

Ling-Yi Kong, ${ }^{\text {,, }}=$ Min-J ian Qin, \ddagger and Masatake Niwa*,t
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, J apan, and China Pharmaceutical University, Nanjing 210009, People's Republic of China

Received October 6, 1999

Four new labdane-type diterpenoids, calcaratarins A-D (1-4), along with six known labdane-type diterpenoids, a known elemane-type sesquiterpenoid, and a known coumarin, were isolated from the rhizomes of Alpinia cal carata. The structures of 1-4 were elucidated on the basis of spectroscopic studies.

Plants of the genus Al pinia (Zingiberaceae) are used as traditional herbs in some areas of the People's Republic of China and certain countries of southeast Asia for relieving stomachache, treating colds, invigorating the circulatory system, and reducing swellings. As part of our studies on the constituents and chemotaxonomy of the plants of the genus Alpinia found in mainland China, we have investigated the constituents of the rhizomes of A. cal carata Rosc., a perennial herb that grows in shaded woodland areas in Guangxi Province. Four new labdane-type diterpenoids, calcaratarins A-D (1-4); six known labdane-type diterpenoids, γ-bicyclohomofarnesal, (E)-15,16-bisnorlabda-8(17),11-dien-13-one, Iabda-8(17),11,13-trien-15(16)-olide, (E)-labda-8(17),12-dien-15-ol-16-al, zerumin A, and isocoronarin D; a known elemane-type sesquiterpenoid, shyobunone; and a known 7-methoxycoumarin were isolated from the rhizomes of A. cal carata. This paper describes the isolation and structure elucidation of compounds 1-4.

Results and Discussion

Calcaratarin A (1), a colorless oil, was indicated by HRFABMS to have the molecular formula $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3}$. The ${ }^{13} \mathrm{C}$ NMR spectrum exhibited 22 carbon signals, including five methyls (two of which were methoxyl groups), eight methylenes, five methines, and four quaternary carbons. The ${ }^{1} \mathrm{H}$ NMR signals at $\delta 0.87(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s})$, and $0.73(3 \mathrm{H}, \mathrm{s})$, as well as those at $\delta 4.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,1.2$ Hz) and $4.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,1.2 \mathrm{~Hz})$, were characteristic of a labdane-type diterpenoid ${ }^{1}$ and were assigned to the methyl groups at C-18, C-19, and C-20 and to the methylene group at C-17, respectively. The ${ }^{13} \mathrm{C}$ NMR spectral data, exhibiting signals for three methyl groups at $\delta 33.61$, 21.74, and 14.41; a quaternary carbon at $\delta 148.27$; and a methylene at δ 107.86, also provided evidence for $\mathbf{1}$ being a labdane-type diterpenoid. The structure of the side-chain (C-11 to C-16) of $\mathbf{1}$ was deduced from its HMQC and HMBC spectra. In the HMBC spectrum, the olefinic signal at δ $6.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-12)$ correlated with the signals of the aldehyde group at $\delta 194.98$ (C-16) and the methylene group at $\delta 29.06$ (C-14). In the HMQC spectrum, the signal at $\delta 29.06$ correlated with the signal at $\delta 2.56(2 \mathrm{H}$, dd, J $=$ $8.4,5.4 \mathrm{~Hz}, \mathrm{H}-14)$, which, in the HMBC spectrum, correlated with the methine signal at $\delta 103.91$ (C-15), and in turn correlated with two methoxyl signals at $\delta 3.33(6 \mathrm{H}$, s, MeO). The stereochemistry of the double bond between C-12 and C-13 of calcaratarin A (1) was determined from

[^0]the NOESY spectrum. A NOE correlation of the signal of the aldehyde group at $\delta 9.32(\mathrm{H}-16)$ and the ol efinic signal at $\delta 6.53$ (H-12) indicated this double bond to be in the E-configuration. Accordingly, the structure of the side-chain was established as shown. The structure of 1, (E)-Iabda-8(17),12-dien-15,15-dimethoxy-16-al, was further confirmed by reacting 1 with hydrochloric acid to give the parent compound, (E)-labda-8(17),12-diene-15,16-dial (5), which has been known since 1980. ${ }^{2}$ The HPLC analysis of an ethanol extract of thefresh rhizomes of A. cal carata showed the presence of $\mathbf{1}$, which was then isolated from the ethanol extract. Therefore, calcaratarin A (1) appears to be a natural product and not an artifact.

Calcaratarin B (2), a colorless oil, was assigned the molecular formula $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$, as determined by HRFABMS. Absorption bands at 3300-2600 and $1708 \mathrm{~cm}^{-1}$ in the IR spectrum indicated the presence of a carboxylic acid group. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra showed clearly the characteristics of a labdane-type diterpenoid. The structure of the side-chain (C-11 to C-16) was deduced from the HMBC spectrum. The ol efinic signal at $\delta 5.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\mathrm{H}-12$) correlated with the methyl signal at $\delta 23.87$ (C-16) and the methylene signal at $\delta 37.39$ (C-14). Furthermore, the proton at $\delta 3.08(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-14)$ correlated with the carboxyl carbonyl at $\delta 177.21$ (C-15). The stereochemistry of the double bond between $\mathrm{C}-12$ and $\mathrm{C}-13$ of cal caratarin B (2) was deduced from the NOESY spectrum. The NOE correlation of the methyl signal at $\delta 1.74$ (H-16) and the olefinic resonance at $\delta 5.31(\mathrm{H}-12)$ showed a Z-configuration of this double bond and supported the sidechain as shown. The structure of calcaratarin B was therefore elucidated as (Z)-Iabda-8(17),12-dien-15-oic acid (2). From the point of view of its biogenesis, $\mathbf{2}$ may to be related to zerumin $\mathrm{A},{ }^{3}$ by reduction of the C-16 aldehyde in the latter to a methyl group.

Calcaratarin C (3), an amorphous solid, was assigned the molecular formula $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$ from its HRFABMS. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of a labdanetype skel eton. The structure of the side-chain (C-11 to C-16) was elucidated from the HMQC and HMBC spectra. In the HMQC spectrum, the methylene signal at $\delta 31.16$ (C-12) correlated with the signals of the protons at $\delta 1.75$ and 1.76. In the HMBC spectrum, the signals at $\delta 1.75(\mathrm{H}-12 \alpha)$ and $1.76(\mathrm{H}-12 \beta)$ correlated with the methine at $\delta 67.40$ (C-11), which was connected to a hydroxyl group, and with the methine at $\delta 51.97$ (C-9). The olefinic signal at $\delta 5.96$ (H-14) correlated with signals for the quaternary carbon at $\delta 172.98$ (C-13), the carbonyl at $\delta 173.45$ (C-15), and the methylene at $\delta 70.98$ (C-16). The chemical shift value of C-13 ($\delta 172.98$) suggested that the carbonyl was located at $\mathrm{C}-15$ rather than $\mathrm{C}-16,{ }^{4}$ and that an α, β-unsaturated

Figure 1. Relative stereochemistry of the skeleton of compounds 1-4 determined from their NOESY NMR spectra.
γ-lactone ring was formed between C-15 and C-16. Thus, the structure of calcaratarin C was established as Iabda-8(17),13-dien-11-ol-15(16)-olide (3). The stereochemistry at C-11 remains to be darified.

Cal caratarin D (4) was obtained as an amorphous solid, and its spectral data, including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, NOESY, HMQC, HMBC, and FABMS, indicated this compound to be a stereoisomer of isocoronarin D, a known labdane-type diterpenoid. ${ }^{5}$ The only structural difference between 4 and isocoronarin D was the stereochemistry at C-14. Because the relative stereochemistry at C-14 of isocoronarin D has been determined as 14β hydroxy (S relative configuration) by X-ray diffraction, ${ }^{5}$ the hydroxyl group at C-14 for 4 must therefore be α-positioned (R relative configuration). Cal caratarin D is accordingly 14-epi-isocoronarin D or Iabda-8(17),12-dien-14 α-ol-16(15)olide (4). Oxidation of calcaratarin D and isocoronarin D with manganese(IV) oxide both gave labda-8(17),12-dien-14-one-16(15)-olide (6).

The relative configurations about the common skeleton of calcaratarins A-D (1-4) were identical with those of Iabdane-type diterpenoids isolated from the plants in the family Zingiberaceae, according to their NOESY spectra (Figure 1) and comparison of ${ }^{13} \mathrm{C}$ NMR data with literature values. ${ }^{1,5,6}$

Eight known compounds were identified, in turn, as γ-bicyclohomofarnesal,7 (E)-15,16-bisnorlabda-8(17),11-dien-13-one, ${ }^{8}$ labda-8(17),11,13-trien-15(16)-olide, ${ }^{1}$ (E)-labda-8(17),12-dien-15-ol-16-al, ${ }^{8}$ zerumin A, ${ }^{3}$ isocoronarin D, ${ }^{5}$ shyobunone, ${ }^{9}$ and 7 -methoxycoumarin, ${ }^{10}$ from their spectral data. The isolation of γ-bicyclohomofarnesal from a natural source has not been reported previously. ${ }^{7}$ Shyo-
bunone, ${ }^{9}$ a known elemane-type sesquiterpenoid, was isolated from a plant in the family the Zingiberaceae for the first time.

Experimental Section

General Experimental Procedures. Optical rotations were taken on a J ASCO P-1020 polarimeter (cell length 100 mm). UV spectra were measured on a J ASCO V-560 UV/vis spectrophotometer (cell length 10 mm). IR spectra were recorded on a J ASCO FT/IR-410 infrared spectrophotometer. 1D and 2D NMR spectra were recorded on J EOL A-400 and A-600 spectrometers. EIMS were measured with a Hitachi M-80 spectrometer. FABMS were measured with a J EOL HX110 spectrometer using m-nitrobenzyl alcohol as matrix. Column chromatography was performed with BW-820MH Si gel (Fuji-Silysia Chemical Co., Ltd., Aichi, J apan). Preparative thin-layer chromatography (TLC) was conducted on Si gel 60 $\mathrm{F}_{254} 0.5-\mathrm{mm}$ plates (Merck), and analytical TLC on Si gel 60 $\mathrm{F}_{254} 0.25-\mathrm{mm}$ plates (Merck), with spots visualized under UV light (254 nm) and by spraying with 10% molybdic acid and subsequent heating of the plates. Preparative HPLC was performed with a J ASCO PU-980 pump, using a PREP-SIL $20 \mathrm{~mm} \times 25 \mathrm{~cm}$ column, equipped with a J ASCO UV-970 UV/ vis detector.

Plant Material. The rhizomes of A. cal carata were collected in the suburbs of Nanning City, Guangxi Province, People's Republic of China, in October 1997, and were identified by M.J.Q., Department of Medicinal Plants, China Pharmaceutical University, with a voucher specimen (no. 971006) having been deposited there.

Extraction and Isolation. The fresh rhizomes $(2.8 \mathrm{~kg})$ were cut into pieces and extracted with $\mathrm{MeOH}(3 \times 15 \mathrm{~L})$ at room temperature. The MeOH extract (129 g) was partitioned between EtOAc (2 L) and water (4 L). The EtOAc solution was concentrated in vacuo to yield 88 g of residue. A part of the residue (44 g) was subjected to col umn chromatography on Si gel (600 g) and eluted with hexane, hexane- $-\mathrm{CHCl}_{3}(10: 2)$, hexane $-\mathrm{CHCl}_{3}(10: 4)$, and CHCl_{3} (each 1.5 L), to give fractions $1-4$, respectively. Fraction 3 (1.9 g) was subjected to column chromatography on Si gel (100 g) with hexane- $-\mathrm{CHCl}_{3}(10: 3)$ as an eluent and to repeated preparativeTLC, using hexanebenzene (10:4) and hexane- CHCl_{3} (10:5) as solvents, to give shyobunone (25.7 mg), 7-methoxycoumarin (13.7 mg), and γ-bicycl ohomofarnesal (17.8 mg). Fraction $4(17.8 \mathrm{~g})$ was subjected to column chromatography on Si gel $(250 \mathrm{~g})$ with gradient mixtures of hexane-EtOAc (100:5, 100:10, 100:20, and 100:30, successively) (each 500 mL), to give fractions $4-1$ (1.8 g), 4-2 (2.7 g), 4-3 (1.5 g), and 4-4 (3.1 g). Fraction 4-1 was subjected to column chromatography on Si gel (30 g) and repeated preparative TLC, eluted with hexane-EtOAc (10:1) and hexane $-\mathrm{CHCl}_{3}(10: 6)$, to give (E)-15,16-bisnorlabda-8(17),11-dien-13-one (3.8 mg) and $1(3.2 \mathrm{mg}$), with final purification by preparative HPLC with hexane-2-propanol (95:5). Fraction 4-2 was purified with column chromatography on Si gel (40 g) and repeated preparative TLC, eluted with hexane-EtOAc (10:1) and benzene-EtOAc (20:1) to give Iabda-8(17),11,13-trien-15(16)-olide (10.3 mg) and 2 (8.9 mg). Fraction 4-3 was purified by column chromatography and repeated preparative TLC, eluted with hexane-EtOAc (100: $15)$ and hexane- $\mathrm{CHCl}_{3}(1: 1)$ to afford (E)-labda-8(17),12-dien-$15-\mathrm{ol}-16-\mathrm{al}(59.8 \mathrm{mg})$ and zerumin A (12.4 mg). Fraction $4-4$ was separated by column chromatography and repeated preparative TLC, eluted with $\mathrm{CHCl}_{3}-$ EtOAc (4:1), and by preparative HPLC, eluted with hexane-2-propanol (80:20), to give $\mathbf{3}(1.1 \mathrm{mg}$) and fraction 4-4-2. The latter was subjected to recycled HPLC to afford $\mathbf{4}(4.1 \mathrm{mg})$ and isocoronarin D (2.8 mg).

An extract $(2.5 \mathrm{~g})$ from the fresh rhizomes (60 g) made with $\mathrm{EtOH}(2 \times 500 \mathrm{~mL})$ was subjected to column chromatograhy (hexane-EtOAc, 10:1), followed by preparative HPLC (hex-ane-2-propanol, 99:1) to give $\mathbf{1}$ (1.2 mg).

Compound 1: colorless oil, $[\alpha]^{21} \mathrm{D}+12.4^{\circ}\left(\mathrm{c} 0.08, \mathrm{CHCl}_{3}\right.$); UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}(\log \epsilon) 235$ (4.01) nm; IR (film) $\nu_{\max } 3083$,

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1}-\mathbf{4}$ at $600 \mathrm{MHz}^{\mathrm{a}}$

H	1	2	3	4
1α	1.07 td (13.2, 3.6)	1.03 td (12.9, 3.6)	1.04 td (12.6, 4.2)	1.05 td (12.6, 4.2)
1β	1.72 br d (13.2)	1.73 br d (12.9)	1.67 br d (12.6)	1.70 br d (12.9)
2α	$1.48 \mathrm{dp}(14.4,3.6)$	1.46 m	1.49 m	$1.48 \mathrm{dp}(13.8,3.6)$
2β	1.56 qt (14.4, 3.6)	1.54 qt (13.8, 3.6)	1.56 qt (13.8, 3.6)	1.57 qt (13.8, 3.6)
3α	1.17 td (13.5, 3.6)	1.16 td (13.8, 4.2)	1.18 td (13.5, 4.2)	1.18 td (13.2, 4.8)
3β	1.40 br d (13.5)	1.37 br d (13.2)	1.39 br d (13.2)	1.41 br d (13.2)
5	1.12 dd (12.3, 3.0)	1.08 dd (12.6, 2.4)	1.15 dd (12.6, 2.4)	1.12 dd (12.6, 2.4)
6α	1.73 m	1.24 m	1.78 m	1.74 ddt 12.6, 4.8, 3.0)
6β	1.33 qd (12.9, 4.8)	1.30 qd (13.2, 4.2)	1.34 qd (13.2, 4.2)	1.31 qd (12.9, 4.2)
7α	2.01 td (12.9, 5.4)	1.99 td (13.2, 5.4)	2.01 td (13.2, 3.6)	1.98 td (13.8, 5.4)
7β	2.39 ddd (12.9, 4.2, 2.4)	2.36 ddd (12.9, 4.5, 2.4)	2.42 ddd (12.9, 4.2, 2.4)	2.37 ddd (13.2, 4.5, 2.4)
9	1.88 br d (10.8)	1.52 br d (9.3)	2.00 br d (9.0)	1.93 br d (10.2)
11	2.44 ddd (17.4, 11.4, 6.6)	2.01 ddd (15.6, 10.5, 5.4)	4.64 m	2.37 ddd (16.4, 10.8, 6.6)
11'	2.62 ddd (17.4, 6.0, 3.0)	2.24 ddd (15.6, 6.6, 1.8)		2.66 ddd (16.4, 7.8, 3.6)
12	6.53 t (6.0)	5.31 t (6.0)	1.75 ddd 12.0, 9.0, 3.6)	6.94 td (6.9, 1.8)
12'			1.76 ddd (12.0, 9.0, 1.2)	
14	2.56 dd (8.4, 5.4)	3.08 br d (1.8)	5.96 q (1.8)	5.04 t (6.0)
15α	4.42 t (5.4)			4.22 dd (10.5, 1.8)
15 β				4.42 dd (10.5, 5.4)
16	9.32 s	1.74 br d (1.2)	4.87 dd (4.2, 1.8)	
17	4.41 dd (2.4, 1.2)	4.45 dd (3.0, 1.2)	4.39 d (1.2)	4.34 br s
17^{\prime}	4.82 dd (2.4, 1.2)	4.80 dd (3.3, 1.2)	4.89 d (1.2)	4.81 br s
18	0.87 s	0.85 s	0.87 s	0.87 s
19	0.81 s	0.79 s	0.79 s	0.80 s
20	0.73 s	0.68 s	0.67 s	0.72 s
MeO	3.33 s			

${ }^{\text {a }}$ The coupling constants (J) in parentheses are given in Hz .
Table 2. ${ }^{13} \mathrm{C}$ NMR Data of Compounds $\mathbf{1 - 4}$ at $150 \mathrm{MHz}^{\mathrm{a}, \mathrm{b}}$

C	1	2	3	4
1	$39.20 \mathrm{CH}_{2}(2 \alpha, 2 \beta, 3 \alpha, 3 \beta, 20)$	$39.10 \mathrm{CH}_{2}(2 \alpha, 3 \beta, 5,20)$	$39.06 \mathrm{CH}_{2}(2 \alpha, 2 \beta, 3 \beta, 20)$	$39.24 \mathrm{CH}_{2}(2 \alpha, 2 \beta, 20)$
2	$19.32 \mathrm{CH}_{2}(1 \beta, 3 \alpha, 3 \beta)$	$19.38 \mathrm{CH}_{2}(1 \beta, 3 \alpha)$	$19.24 \mathrm{CH}_{2}(1 \alpha, 3 \alpha, 3 \beta)$	$19.31 \mathrm{CH}_{2}(1 \beta, 3 \alpha)$
3	$42.06 \mathrm{CH}_{2}(1 \beta, 18,19)$	$42.12 \mathrm{CH}_{2}(1 \alpha, 1 \beta, 18,19)$	$41.94 \mathrm{CH}_{2}(1 \beta, 18,19)$	$41.98 \mathrm{CH}_{2}(1 \beta, 18,19)$
4	33.56 C ($3 \alpha, 5,18,19$)	33.55 C ($3 \alpha, 3 \beta, 5,18,19)$	33.60 C ($5,18,19$)	33.58 C ($5,18,19$)
5	$55.46 \mathrm{CH}(3 \beta, 6 \alpha, 18,19)$	$55.39 \mathrm{CH}(3 \alpha, 3 \beta, 6 \beta, 18,19)$	$55.50 \mathrm{CH}(3 \alpha, 18,19)$	$55.41 \mathrm{CH}(18,19,20)$
6	$24.14 \mathrm{CH}_{2}(5,7 \beta)$	$24.23 \mathrm{CH}_{2}(5,7 \alpha)$	$24.34 \mathrm{CH}_{2}(5,7 \alpha, 7 \beta)$	$24.13 \mathrm{CH}_{2}(5,7 \alpha)$
7	$37.91 \mathrm{CH}_{2}(6 \alpha, 9)$	$38.10 \mathrm{CH}_{2}\left(17,17^{\prime}\right)$	$38.18 \mathrm{CH}_{2}\left(9,17,17^{\prime}\right)$	$37.84 \mathrm{CH}_{2}\left(17,17^{\prime}\right)$
8	148.27 C ($9,11^{\prime}$)	$148.56 \mathrm{C}(7 \alpha, 7 \beta, 11)$	148.69 C ($6 \alpha, 11$)	$148.19 \mathrm{C}\left(9,11^{\prime}\right)$
9	$56.58 \mathrm{CH}\left(11,11^{\prime}, 17,17^{\prime}, 20\right)$	57.10 CH (11, 11', 17, 17', 20)	$51.97 \mathrm{CH}(12,12,20)$	$56.46 \mathrm{CH}\left(11,17,17^{\prime}, 20\right)$
10	39.58 C ($1 \alpha, 9,20$)	39.51 C ($1 \beta, 5,20$)	$39.43 \mathrm{C}(5,20)$	39.75 C (5,20$)$
11	$24.54 \mathrm{CH}_{2}(9,12)$	$22.76 \mathrm{CH}_{2}(9,12)$	$67.40 \mathrm{CH}\left(12,12{ }^{\prime}\right)$	$25.15 \mathrm{CH}_{2}(9,12)$
12	$159.93 \mathrm{CH}\left(9,11,11^{\prime}\right)$	$130.24 \mathrm{CH}\left(11,11^{\prime}, 14,16\right)$	$31.16 \mathrm{CH}_{2}(9,11)$	$149.87 \mathrm{CH}\left(11,11^{\prime}\right)$
13	138.16 C (11, 11', 14, 16)	$126.63 \mathrm{C}\left(11,11^{\prime}, 14,16\right)$	172.98 C (12, 12', 14)	$127.88 \mathrm{C}\left(11,11^{\prime}, 14 \beta\right)$
14	$29.06 \mathrm{CH}_{2}(12,16)$	$37.39 \mathrm{CH}_{2}(12,16)$	$114.52 \mathrm{CH}(12,12,16)$	$66.54 \mathrm{CH}(12,15 \alpha)$
15	$103.91 \mathrm{CH}(14, \mathrm{OMe})$	177.21 C (14)	173.45 C (14, 16)	$74.21 \mathrm{CH}_{2}(14 \beta)$
16	$194.98 \mathrm{CH}(12,14)$	$23.87 \mathrm{CH}_{3}(12,14)$	$70.98 \mathrm{CH}_{2}$ (14)	169.96 C ($12,14 \beta, 15 \alpha)$
17	$107.86 \mathrm{CH}_{2}(9,7 \alpha)$	$107.37 \mathrm{CH}_{2}$ (9)	$106.51 \mathrm{CH}_{2}(7 \alpha, 9)$	$107.49 \mathrm{CH}_{2}$
18	$33.61 \mathrm{CH}_{3}(3 \alpha, 5,19)$	$33.62 \mathrm{CH}_{3}(3 \alpha, 3 \beta, 5,19)$	$33.55 \mathrm{CH}_{3}(5,19)$	$33.54 \mathrm{CH}_{3}(5,19)$
19	$21.74 \mathrm{CH}_{3}(3 \alpha, 5,18)$	$21.75 \mathrm{CH}_{3}(3 \alpha, 5,18)$	$21.64 \mathrm{CH}_{3}(5,18)$	$21.69 \mathrm{CH}_{3}(5,18)$
20	$14.41 \mathrm{CH}_{3}(1 \alpha, 5,9)$	$14.38 \mathrm{CH}_{3}(5,9)$	$14.63 \mathrm{CH}_{3}(5,9)$	$14.42 \mathrm{CH}_{3}(5,9)$
MeO	$54.30 \mathrm{CH}_{3}(15)$			

a Multiplicities of carbons were assigned by DEPT spectra. ${ }^{\text {b }}$ HMBC corelations are shown in parentheses.

2932, 2868, 2843, 1683, 1642, 1458, 1388, 1366, 1261, 1192, 1162, 1121, 1079, 1015, 974, 889, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 600 MHz), see Table 1; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$), see Table 2; FABMS m/z 371 (100) [M + Na] ${ }^{+}, 347,319,285,215,191$, 154, 137; HRFABMS m/z 371.2563 (calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}$, 371.2562).

Compound 2: colorless oil, $[\alpha]^{20}{ }_{\mathrm{D}}+14.8^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$); UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, no absorption over 210 nm ; IR (film) $v_{\max } 3082$, 2929, 2868, 1708, 1644, 1459, 1441, 1412, 1388, 1295, 1216, 891, $758 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$), see Table 1 ; ${ }^{13} \mathrm{C}$ NMR (CDCl $3,150 \mathrm{MHz}$), see Table 2; FABMS m/z 305 [M + H ${ }^{+}, 289,245,217,191,176,154$ (100), 137, 136; HRFABMS $\mathrm{m} / \mathrm{z} 305.2473$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2}, 305.2481$).

Compound 3: amorphous solid, $[\alpha]^{24} \mathrm{D}+36.6^{\circ}$ (c 0.05 , $\left.\mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}(\log \epsilon) 211$ (3.86) nm; IR (film) $v_{\text {max }}$ 3388, 3077, 2963, 2939, 2868, 2855, 1737, 1632, 1442, 1429, 1388, 1272, 1177, 1142, 1082, 1011, 898, $869 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$, see Table 1; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$), see Table 2; FABMS m/z 341 (100) [M + Na] ${ }^{+}, 321,309,289$,

176, 154, 137, 136; HRFABMS m/z 341.2095 (calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}-$ $\mathrm{Na}, 341.2093$).

Compound 4: amorphous solid, $[\alpha]^{22}{ }_{D}+21.5^{\circ}$ (c 0.15 , $\left.\mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}(\log \epsilon) 223$ (3.94) nm; IR (film) $v_{\text {max }}$ 3397, 2997, 2919, 2845, 1726, 1676, 1647, 1456, 1435, 1386, 1364, 1292, 1219, 1089, 1046, 1011, 979, $907 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$, see Table 1; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$), see Table 2; FABMS m/z $319[\mathrm{M}+\mathrm{H}]^{+}, 303,289,245,219$, 191, 177, 154 (100), 137, 136; HRFABMS m/z 319.2272 (calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3}, 319.2273$).

TLC R f_{f} values using hexane-EtOAc (2:1) were as follows: 1, 0.84; 2, 0.26; 3, 0.52; 4, 0.49.

Hydrolysis of Compound 1. A solution of compound $\mathbf{1}$ (3.0 $\mathrm{mg}), 0.25 \mathrm{~N} \mathrm{HCl}(2.5 \mathrm{~mL})$, and dioxane (1.5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After dilution with water (5 mL), the reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 3 \mathrm{~mL})$. The combined extracts were washed with saturated aqueous NaCl solution $(2 \times 3 \mathrm{~mL})$, dried over MgSO_{4}, and then concentrated in vacuo. The residue was purified by preparative HPLC (hexane-2-
propanol, 98:2) to give $5(1.4 \mathrm{mg}):{ }^{2}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 1.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \alpha), 1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \beta), 1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \alpha)$, $1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 1.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=$ $13.0 \mathrm{~Hz}, \mathrm{H}-3 \beta), 1.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,3.2 \mathrm{~Hz}, \mathrm{H}-5), 1.75(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-6 \alpha), 1.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \beta), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \alpha), 2.42(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, \mathrm{H}-7 \beta), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-9), 2.35$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), $2.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11^{\prime}\right), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,6.5$ $\mathrm{Hz}, \mathrm{H}-12), 3.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{H}-14), 3.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.16.0 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right), 9.65$ (1 H, br s, H-15), 9.44 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 4.36 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-17$), $4.89\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-17^{\prime}\right), 0.90$ (3H, s, H-18), 0.82 (3H, s, H-19), 0.75 (3H, s, H-20); EIMS m/z 302 (M ${ }^{+}$), 273, 191, 177, 137 (100), 95, 81.

Oxidation of Compound 4. A mixture of $\mathbf{4}(3.5 \mathrm{mg})$ and freshly prepared $\mathrm{MnO}_{2}(4 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred at $35^{\circ} \mathrm{C}$ for 10 h . After filtration, the filtrate was concentrated and purified by preparative TLC (hexane-EtOAc 5:1) to give 6 (0.6 mg): IR (KBr) $v_{\text {max }} 3020,2932,2844,1735,1711,1668$, 1639, 1457, 1346, 1082, 1045, 992, $891 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 1.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \alpha), 1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \beta), 1.44(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2 \alpha), 1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 1.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 1.40(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{H}-3 \beta)$, $1.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,2.5 \mathrm{~Hz}, \mathrm{H}-5)$, 1.76 (1H, m, H-6 $), 1.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \beta), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \alpha)$, $2.41(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \beta), 1.91(1 \mathrm{H}$, br d, J $=9.5 \mathrm{~Hz}, \mathrm{H}-9), 2.62(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-11$), 2.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11^{\prime}$), 7.09 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-12$), $4.64(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-15), 4.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-17), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, H-17'), 0.86 (3H, s, H-18), 0.81 (3H, s, H-19), 0.73 (3H, s, H-20); EIMS m/z 316 (${ }^{+}$), 259, 191, 167, 137 (100); HRFABMS m/z 317.2119 (calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3}, 317.2117$).

Oxidation of Isocoronarin D. Isocoronarin D (2.5 mg) was treated with freshly prepared $\mathrm{MnO}_{2}(4 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$
by the same procedure as described above to give $6(0.5 \mathrm{mg})$, and its IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of the ketone from 4.

Acknowledgment. This research was supported by the National Natural Science Foundation of China and Meijo University Research Fellowship (to L.-Y. K.). We are grateful to Dr. J unko Ito (Meijo University) for the HRFABMS measurements.

References and Notes

(1) Nakatani, N.; Kikuzaki, H.; Yamaji, H.; Y oshio, K.; Kitora, C.; Okada, K.; Padolina W. G. Phytochemistry 1994, 37, 1383-1388.
(2) Itokawa, H.; Morita, H.; Mihashi, S. Chem. Pharm. Bull. 1980, 28, 3452-3454.
(3) Xu, H. X.; Dong, H.; Sim, K. Y. Phytochemistry 1996, 42, 149-151.
(4) Radics, L.; Kajtar-Peredy, M.; Nozoe, S.; Kobayashi, H. Tetrahedron Lett. 1975, 4415-4418.
(5) Singh, S.; Gray, A. I.; Skelton, B. W.; Waterman, P. G.; White, A. H. Aust. J. Chem. 1991, 44, 1789-1793.
(6) Sy, L. K.; Brown, G. D. J. Nat. Prod. 1997, 60, 904-908.
(7) Cambie, R. C.; Clark, G. R.; Goeth, M. E.; Rickard, C. E. F.; Rutledge, P. S.; Ryan, G. R.; Woodgate, P. D. Aust. J. Chem. 1989, 42, 497509.
(8) Itokawa, H.; Y oshimoto, S.; M orita, H. Phytochemistry 1988, 27, 435438.
(9) Yamamura, S.; I guchi, M.; Nishiyama, A.; Niwa, M.; Koyama, H.; Hirata, Y. Tetrahedron 1971, 27, 5419-5431.
(10) Cussans, N. J.; Huckerby, T. N. Tetrahedron 1975, 31, 2719-2726. NP9904962

[^0]: * To whom correspondence should be addressed. Fax: +81-52-834-8090. E-mail: masa@meijo-u.ac.jp.
 ${ }^{+}$Meijo University.
 \# China Pharmaceutical University.

